ScalaTexture™

ScalaTexture™ comprises a range of styles and visual effects appropriate for privacy applications where light diffusion and obscuration are desired.

Features

Create Private & Illuminated Spaces

ScalaTexture™ diffuses the light that enters a space, transferring the very best qualities of natural light whilst blocking out onlookers.

Striking Designs without the Pricetag

ScalaTexture™ offers a low-cost decorative touch to a room with a range of styles and visual effects to suit any setting.

Pattern Consistency & Durability

Our options across the ScalaTexture™ range come with a consistent finish and high level of durability.

Product Range

Cathlite	
Available Thickness (mm)	4, 5
Maximum Sheet Size (mm)	2440×1840

Narrow-Reeded	
Available Thickness (mm)	6, 10
Maximum Sheet Size (mm)	2440×1830 (6mm), 3000×1840 (10mm)

Satinlite	
Available Thickness (mm)	4, 5, 6
Maximum Sheet Size (mm)	2440×1840 (4mm), 2140×1840 (5mm), 2440×1840 (6mm)

Spotswood

Available	Thickness	(mm)	4,	5,	6

Maximum Sheet Size (mm) 2440×1840 (4mm), 2140×1840 (5mm), 2440×1840 (6mm)

Applications

Internal

Doors, Frameless Glazing, Shower Screens, Partitions

External

Doors, Windows, Balustrades

Technical Data

Performance

Single Glazing

Product Name	Nominal Thickness		Visible		Solar		UV Trans.	U- Value	SHGC	Shading Co.	Weight m ²
		Trans.	Refl. Out	Refl. In	Trans.	Refl.					
ScalaTexture™ Cathlite	4	90	9	9	85	9	73	5.9	0.87	1	10
ScalaTexture™ Cathlite	5	89	8	8	79	7	63	5.8	0.83	0.95	12.5
ScalaTexture™ Narrow- Reeded	6	90	9	9	85	9	73	5.9	0.87	1	10
ScalaTexture™ Narrow- Reeded	10	86	8	8	71	7	56	5.7	0.78	0.89	20
ScalaTexture™ Satinlite	4	90	9	9	85	9	73	5.9	0.87	1	10
ScalaTexture™ Satinlite	5	89	8	8	79	7	63	5.8	0.83	0.95	12.5
ScalaTexture™ Satinlite	6	88	8	8	78	7	60	5.8	0.82	0.95	15
ScalaTexture™ Spotswood	4	90	9	9	85	9	73	5.9	0.87	1	10
ScalaTexture™ Spotswood	5	89	8	8	79	7	63	5.8	0.83	0.95	12.5
ScalaTexture™ Spotswood	6	88	8	8	78	7	60	5.8	0.82	0.95	15

Double Glazing

Product Name	Nominal Thickness	Visible		Solar		UV Trans.	U-Value		SHGC	Shading Co.	Weight m²	
		Trans.	Refl. Out	Refl. In	Trans.	Refl.		Air	Argon			
ScalaTexture™ Cathlite + QFloat™ Clear	4+12+4	82	16	16	73	15	58	2.7	2.6	0.77	0.89	20
ScalaTexture™ Cathlite + QFloat™ Clear	5+12+5	79	15	15	63	12	47	2.7	2.6	0.72	0.83	25
ScalaTexture™ Cathlite + EnergyTech™ Clear (#3)	4+12+4	75	18	17	59	18	44	1.9	1.7	0.73	0.83	20
ScalaTexture™ Cathlite + EnergyTech™ Clear (#3)	5+12+5	74	17	17	55	15	40	1.9	1.7	0.68	0.78	22.5
ScalaTexture™ Satinlite + QFloat™ Clear	4+12+4	82	16	16	73	15	58	2.7	2.6	0.77	0.89	20
ScalaTexture™ Satinlite + QFloat™ Clear	5+12+5	79	15	15	63	12	67	2.7	2.6	0.72	0.83	20
ScalaTexture™ Satinlite + QFloat™ Clear	6+12+6	78	15	15	62	12	44	2.7	2.6	0.71	0.82	30
ScalaTexture™ Satinlite + EnergyTech™ Clear (#3)	4+12+4	75	18	17	59	18	44	1.9	1.7	0.73	0.83	20
ScalaTexture™ Satinlite + EnergyTech™ Clear (#3)	5+12+5	74	17	17	55	15	40	1.9	1.7	0.68	0.78	22.5
ScalaTexture™ Satinlite + EnergyTech™ Clear (#3)	6+12+6	73	17	16	52	15	35	1.9	1.6	0.67	0.77	30
ScalaTexture™ Spotswood + QFloat™ Clear	4+12+4	82	16	16	73	15	58	2.7	2.6	0.77	0.89	20
ScalaTexture™ Spotswood + QFloat™ Clear	5+12+5	79	15	15	63	12	47	2.7	2.6	0.72	0.83	25
ScalaTexture™ Spotswood + QFloat™ Clear	6+12+6	78	15	15	62	12	44	2.7	2.6	0.71	0.82	30
ScalaTexture™ Spotswood + EnergyTech™ Clear (#3)	4+12+4	75	18	17	59	18	44	1.9	1.7	0.73	0.83	20
ScalaTexture™ Spotswood + EnergyTech™ Clear (#3)	5+12+5	74	17	17	55	15	40	1.9	1.7	0.68	0.78	22.5
ScalaTexture™ Spotswood + EnergyTech™ Clear (#3)	6+12+6	73	17	16	52	15	35	1.9	1.6	0.67	0.77	30

Considerations

Directional Pattern

Cathlite and Narrow Reeded have a directional pattern. The pattern runs in the long direction of the sheet.

How to Specify

Available colours and thicknesses:

 Cathlite
 4 & 5mm

 Narrow-Reeded
 6 & 10mm

 Satinlite
 4, 5 & 6mm

 Spotswood
 4, 5 & 6mm

Glass Thicknesses and colours available:

- ScalaTexture™ Satinlite 4, 5 & 6mm
- ScalaTexture™ Spotswood 4, 5, & 6mm
- ScalaTexture™ Cathlite 4, 5 & 6.76mm
- ScalaTexture™ Narrow-Reeded Clear 6 & 10mm
- ScalaTexture™ Narrow-Reeded SuperClear 6 & 10mm*

Select from: Annealed, Heat Strengthened, Toughened or Toughened Heat Soaked.

*If unsure, select in compliance with AS1288–2021 or manufacturers recommendation. Patterned Glass is manufactured by embossing one surface of the molten glass using rollers. The process forms a textured surface which has a combination of raised and recessed surfaces resulting in a variation of glass thickness. For more details on specifications please contact Oceania Glass. ScalaTexture™ Narrow-Reeded SuperClear 6 & 10mm limited availability.

The glass shall comply with the following performance criteria:

- U value
- Solar Heat Gain Coefficient (SHGC)
- Visible Light Transmission %
- Glass Only Values
- Total window

Annealed

Annealed glass is glass produced without internal stresses imparted by heat treatment, i.e., rapid cooling, or by toughening or heat strengthening. Annealed glass is not a Grade A safety glass.

Toughened

Glass converted to a safety glass by subjection to a process of pre-stressing so that, if fractured, the entire piece disintegrates into small, harmless particles. Toughened glass is a Grade A Safety Glass

Heat Soaking

Heat soak testing is a destructive test, which reduces the likelihood of spontaneous breakage by converting impurities such as nickel sulphide inclusions. Heat soaking is required in some but not all applications. If unsure, select in compliance with AS1288-2021 or manufacturers recommendation.

Heat Strengthening

All glass which requires extra strength and thermal resistance will be heat strengthened. Heat strengthening increases the strength of annealed glass; however, it is not a substitute for toughened glass.

In the event of fracturing heat strengthened glass will crack and tends to remain in glazed position.

All glass is to be selected and installed in accordance but not exclusively with the following Australian and/or New Zealand Standards

- AS 1288 Glass in Buildings Selection and Installation
- AS 1170 Minimum Wind Loads on Structures
- AS/NZ 2208 Safety Glazing Materials in Buildings
- AS/NZ 4666 Insulating Glass Units
- AS/NZ 4667 Quality Requirements for cut-to-size and Processed Glass

Oceania Glass makes and distributes glass. Oceania Glass does not process glass nor produce Insulated Glass Units. Processing of glass and production of Insulated Glass Units is undertaken by independent processors. Speak with your nominated glass processors to understand their processing capability.